Where is scattering important in nanotransistors? M. P. Anantram & Alexei Svizhenko Center for Nanotechnology NASA Ames Research Center Moffett Field, California #### Equations - Developed algorithms and models for 2D (quasi-1D) simulation of nanostructures - Equations for retarded (G^r) and less-than (G[<]) Green's functions: $$(E-H-\Sigma')$$ $G'(r,r',E) = \delta(r-r')$ $$(E-H-\Sigma')$$ $G^{<}(r,r',E) = \Sigma^{<} G^{a}(r,r',E)$ $$(E-H-\Sigma')$$ $G^{>}(r,r',E) = \Sigma^{>} G^{a}(r,r',E)$ - Σ^{r} represents self-energy due to <u>open boundaries</u> and <u>electron-</u> phonon scattering (self-consistent Born approx.) - Poisson's equation ### Region 1, 2, 3 & 4 below? Where is scattering most detrimental to on-current? #### Competing Factors - Energy relaxation in the drainend - Poisson's equation: Source injection barrier height. - Simple models have assumed: - Scattering is important only in the source-end. - The extension regions can be modeled as series resistances Potential (V) #### Device A: = 10 nm #### Device A: = 10 nm L_{ch} = 10 nm L_{scatt} = 10 nm Ballisticity = 68% ## Device B: L_{ch} = 25 nm 69% - Scattering in the right half (of channel) is comparable to scattering in the left half, in causing on-current reduction. - What happens when the scattering length is smaller? ## What happens when L_{ch} >> L_{scatt}? $L_{ch} = 25 \text{ nm}$ As L_{ch} becomes much larger than L_{scatt}, scattering in the sourceend becomes much more important than the drain-end Hot carriers at drain end Reflection at drain-end has a large influence only a small influence Reflection at drain-end has Thermalized at drain end ## Series Resistance? Conventional methods treat the extension regions as a series resistance that can be added to an equivalent circuit. Voltage drops: I_bR_s and I_bR_b Can he highly done a system (Rs+Rb), Vg-I_DR_S] Can the highly doped extension regions be modeled as series resistances? # Potential, series resistance, current super-linear decrease in current because of electrostatics If the channel is ballistic, scattering in the drain extension causes a Source injection barrier increases due to scattering in the drain $V_{\rm D} = 0.6 \text{ V} - 0.1 \text{ V} = 0.5 \text{ V} \text{ (red line)}$ | |
 | | |--|------|-----| No. |